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Optimizing Soil Hydraulic Parameters 
in RZWQM2 under Fallow Conditions

Soil Physics

An agricultural system model is a promising tool to quantify and improve our 
understanding of soil hydrologic processes and to evaluate and extrapolate 

various agricultural management practices under diff erent climate and soil condi-
tions (Ahuja et al., 2006; Ma et al., 2007). Model calibration and evaluation are 
essential for successful model applications. Soil hydraulic properties, including soil 
water retention and hydraulic conductivity, are the most important parameters in 
these models that infl uence the soil water fl ow and mass balance (Ahuja and Ma, 
2002; Ahuja et al., 2006). Laboratory and in situ measurements of these hydrau-
lic parameters are oft en insuffi  cient, however, for the model input requirements 
(Mertens et al., 2005; Oliver and Smettem, 2005). Th erefore, many pedotransfer 
functions (Bouma and van Lanen, 1987; Bouma, 1989) have been developed to es-
timate soil hydraulic parameters by relating the missing parameters to the available 
basic soil data (Børgesen et al., 2008; Chirico et al., 2007; Twarakavi et al., 2008). 
Several reviews on the development, application, and evaluation of pedotransfer 
functions can be found in the literature (Ahuja et al., 1999; Rawls et al., 1991; 
van Genuchten and Leij, 1992; Wösten et al., 2001). Based on a similar-media 
concept (Simmons et al., 1979; Warrick et al., 1977), advances in the development 
of pedotransfer functions and inverse modeling have used surrogate soil data, such 
as bulk density and soil water content at 33 kPa suction, to estimate the complete 
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soil water retention curve (SWRC) of a related soil textural class 
(Ahuja et al., 1985; Williams and Ahuja, 1992).

Th e RZWQM2 model (Ahuja et al., 2000) has been applied 
to many research problems using manual calibration based on ex-
perience and expertise. No systematic and repeatable approach 
for parameter estimation has been applied to RZWQM2 until 
very recently, when Nolan et al. (2010) used PEST to calibrate 
RZWQM2. Due to parameter cross-correlations, it is possible 
that soil and plant parameters have been tuned with compensat-
ing eff ects. Th us, there remains a need to apply a systematic auto-
mated approach of parameter estimation to fallow periods with 
no soil–crop interaction. Soil hydraulic properties estimated 
during fallow periods should be applicable to the cropped phase, 
allowing independent estimation of crop parameters later.

Most studies on calibrating the parameters in RZWQM2 
did not consider the diff erences between the parameter estima-
tion methods provided in the RZWQM2 interface (Fang et al., 
2008, 2010; Hu et al., 2006; Yu et al., 2006). A recent study 
showed that these methods for estimating soil hydraulic proper-
ties strongly infl uenced the soil water balance and crop growth 
results (Ma et al., 2009).

Soil parameters vary in space and time as infl uenced by soil 
and climate conditions and management practices (Ahuja et 
al., 1998; Green et al., 2003; Strudley et al., 2008), which has 
made it diffi  cult to calibrate these parameters in agricultural sys-
tem models when few measured fi eld data were available (Ahuja 
et al., 1999, 2006; Hupet et al., 2004). Nonlinear correlations 
between these parameters also contribute to the uncertainties 
(Ahuja et al., 1998; Ahuja and Ma, 2002). Traditional trial-and-
error calibration methods are time consuming and subjective and 
it is diffi  cult to get the best parameter values due to the complex 
interactions between these parameters in the model.

To cope with these diffi  culties, many strategies for tackling 
the above problems, such as decomposition, screening, and space 
reduction (Shan and Wang, 2009) and some associated automat-
ic calibration procedures have also been developed for parameter 
estimations (Duan et al., 1992; Madsen et al., 2002; Vrugt et al., 
2008). In general, automatic calibration algorithms or procedures 
can be classifi ed as local or global search strategies (Sorooshian 
and Gupta, 1995). For example, the gradient-based Gauss–
Marquard–Levenberg (GML) procedure, as a local search strat-
egy, was implemented in the PEST soft ware (Doherty, 2004), 
which has been used widely to calibrate soil hydraulic parameters 
(Iskra and Droste, 2007; Jhorar et al., 2004; Maneta et al., 2008; 
Skahill et al., 2009). Such gradient-based methods have been ap-
plied in vadose zone hydrology modeling studies (Meadows et 
al., 2005; Si and Kachanoski, 2000; Romano and Santini, 1999). 
Th e typical global search procedures, such as Shuffl  ed Complex 
Evolution (Duan et al., 1992), genetic algorithms (Wang, 1991), 
and simulated annealing (Sumner et al., 1997), are also widely 
applied in hydraulic models (Madsen et al., 2002; Vrugt et al., 
2003b). Th ese optimization methods have been applied to opti-
mize soil hydraulic parameters for vadose zone hydrology mod-
eling (Abbaspour et al., 2004; Hupet et al., 2003; Mertens et al., 

2005; Vrugt et al., 2003a). Latin hypercube sampling (McKay 
et al., 1979) continues to be used widely for parameter sensitiv-
ity analysis (Christiaens and Feyen, 2002; van Griensven et al., 
2006). Th ese diff erent model calibration procedures have been 
highly effi  cient in multiple parameter calibrations of hydraulic 
models with some constraints for application (Beven and Binley, 
1992; Duan et al., 1992). More recently developed advanced 
Markov chain Monte Carlo methods and the global multi-
method search algorithm AMALGAM have been explored for 
estimating the Pareto solution set and posterior probability den-
sity function of the parameters (Vrugt et al., 2003b; Vrugt and 
Robinson, 2007; Wöhling et al., 2008). Th ese methods continue 
to advance (Vrugt et al., 2009; Huisman et al., 2010) but their 
application to RZWQM2 is beyond the scope of this study.

In this study, LHS and the GML-based PEST soft ware were 
used as well-established procedures to calibrate soil hydraulic 
parameters in RZWQM2 and test diff erent internal parameter 
estimation methods in combination with these external optimi-
zation strategies. High temporal resolution soil water measure-
ments at multiple depths from dielectric probes during fallow 
periods in a dryland winter wheat (Triticum aestivum L.) fi eld in 
Colorado were used for calibration and evaluation. Six methods 
for estimating soil water retention and hydraulic conductivity 
based on the Brooks–Corey (BC) model (Brooks and Corey, 
1964) in RZWQM2 were compared.

Th e specifi c objectives of the study were to: (i) evaluate and 
compare six diff erent parameter estimation methods within the 
RZWQM2 for calibrating soil hydraulic parameters and simu-
lating soil water dynamics across seasons; (ii) test whether the 
calibration of soil hydraulic properties in RZWQM2 can be 
improved using diff erent combinations of external procedures 
(LHS and PEST) for parameter estimation; and (iii) relate pa-
rameter variability associated with measured data sets and pa-
rameter estimation to soil processes and profi le water balance.

MATERIALS AND METHODS
Soil Hydraulic Parameter Estimation Methods 
within RZWQM2

Th e RZWQM2 model uses soil horizons to defi ne soil properties, 
and each horizon has its own soil physical and hydraulic properties. Th e 
physical properties are bulk density, particle density, porosity, and tex-
ture. Hydraulic properties are defi ned by the soil water content–matric 
suction relationship and the unsaturated hydraulic conductivity–mat-
ric suction relationship, which are both described by the BC model 
(Brooks and Corey, 1964) with slight modifi cations. Th e BC model was 
originally developed and validated based on limited soil types but has 
been widely applied to simulate soil water and nutrient movement and 
dynamics under various climate and soil conditions using RZWQM2 
(and its predecessor, RZWQM) (Ahuja et al., 2000; Ma et al., 2007) 
and other soil hydrology models.

Th e BC equations and parameter values are defi ned here for refer-
ence. For water retention, the equations used to relate volumetric soil 
water content (θ) and matric suction head (ψ, where ψ > 0 for negative 
soil water pressures) are
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where θs and θr are saturated and residual soil water contents, respective-
ly, ψb is the air-entry water suction (negative “bubbling pressure head”), 
and λ is the absolute value of the slope of the log(θ)–log(ψ) curve or the 
pore-size distribution index. Similarly, assuming that the log–log slope 
of the water retention curve is linearly related to the log–log slope of 
the unsaturated conductivity curve, the hydraulic conductivity, K, vs. 
suction head is
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where Ksat is the saturated hydraulic conductivity. Th erefore, the “full” 
set of BC parameters for both water retention and conductivity include 
Ksat, θs, θr, ψb, and λ.

In RZWQM2, several methods are available for estimating the 
SWRC, such as the one-parameter method from soil water content at 
33-kPa soil suction (Williams and Ahuja, 1992) and the two-parameter 
method from soil water contents at both 33- and 1500-kPa soil suctions 
(Ma et al., 2009). In the model, Ksat can be estimated based on eff ec-
tive porosity (Ahuja et al., 1989) or from soil texture class mean values 
(Rawls et al., 1982). In this study, six internal methods for estimating 
the BC parameters were used. Th ese methods were comprised of three 
methods for estimating water retention parameters and two methods 
for estimating Ksat. For the fi rst method, the relationship between θ and 
ψ can be written as (Ahuja and Williams, 1991)

( ) ( )rln lna bψ θ θ= + -  [5]

where b = −1/λ. Williams and Ahuja (1992) found that

a p qb= +  [6]

where p = −0.52 and q = 0.67 for all soil texture classes when ψ is in 
kilopascals. Th e value of λ is calculated from θs and θ1/3 (soil water 
content at 33 kPa or 1/3 bar), and then ψb is obtained from a and λ, 
where a = ln(B)/λ and B = (θs − θr)ψb

λ (Williams and Ahuja, 2003). 
Because a soil water retention curve can be estimated using only θ1/3 
(assuming θs is measured and θr = 0 or a known value), it is called the 
one-parameter method. In this study, θs and θr are added unknowns, 
but with smaller bounds.

Th e second method to estimate a soil water retention curve was 
based on both θ1/3 and θ15 (soil water content at 1500 kPa). From Eq. 
[5], we can derive two equations:

( ) ( )1/3 rln 333 lna b θ θ= + -  [7]

( ) ( )15 rln 15,000 lna b θ θ= + -  [8]

From these two equations, λ is
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Because both θ1/3 and θ15 are needed for estimating the soil water reten-
tion curve, it is called the two-parameter method.

Th e third method was based on the parameters λ, ψb, θs, and θr 
in RZWQM2. Th is is called the full Brooks–Corey parameter method 
because all of the parameters for the BC model were used for both wa-
ter retention and hydraulic conductivity as functions of matric suction. 
Water content at any suction (e.g., θ1/3 and θ15) can be computed from 
the full BC model for comparison with the other methods.

Another parameter, Ksat (cm h−1), needed for RZWQM2 was es-
timated initially from the soil texture class based on average soil hydrau-
lic properties (Rawls et al., 1982). Alternatively, based on the formula 
by Ahuja et al. (1989), Ksat was estimated using an improved empirical 
relationship with eff ective porosity:

( )3.63
sat s 1/3509.4K θ θ= -  [10]

In this study, six combinations of soil water retention curve estima-
tion and Ksat estimation methods were used (Table 1). Th e SWRC1Kin 
method is the one-parameter method with Ksat as an independent input, 
while SWRC1Kes is the one-parameter method with Ksat calculated 
from Eq. [10]. Th e SWRC2Kin method is the two-parameter method 
with Ksat as independent input, and SWRC2Kes is the two-parame-
ter method with Ksat calculated from Eq. [10]. Th e SWRCλKin and 
SWRCλKes methods are the corresponding full BC parameter meth-
ods. All of these estimation methods in RZWQM2 were used for pa-
rameter calibrations with the following external optimization methods.

Parameter Optimization Methods
Latin hypercube sampling is a global parameter analysis method 

(McKay et al., 1979) that samples the joint cumulative density function 
rather than the joint probability density function as in other Monte 
Carlo based methods. Latin hypercube sampling produces uniform 
coverage of the parameter space and is more effi  cient than the original 
Monte Carlo sampling method. Other global search methods, such as 
Markov chain Monte Carlo sampling (Vrugt et al., 2003b; Marshall et 

Table 1. Parameter estimation methods used for the soil water retention curve (SWRC) and saturated hydraulic conductivity in 
RZWQM2, and external optimization procedures using Latin hypercube sampling (LHS) and the PEST parameter estimation program.

Method Ksat independent Ksat estimated from Eq. [10] Calibration parameters† Optimization procedures

One-parameter method SWRC1Kin SWRC1Kes θs, θ1/3, Ksat
PEST, LHS, LHS + PEST

Two-parameter method SWRC2Kin SWRC2Kes θs, θ1/3, θ15, Ksat
PEST, LHS + PEST

Full Brooks–Corey method SWRCλKin SWRCλKes θs, λ, ψb, Ksat
PEST, LHS, LHS + PEST

† θs, saturated soil water content (m3 m−3); θ1/3 and θ15, soil water contents at 33 and 1500 kPa (m3 m –3); Ksat, saturated hydraulic conductivity 
(cm h−1); λ, pore-size distribution index; ψb, air-entry water suction or negative bubbling pressure head (cm).
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al., 2004), can be more effi  cient than LHS, but in this study we used the 
LHS method mainly to search for initial values and ranges of the soil hy-
draulic parameters in RZWQM2 for PEST optimizations. Th e soil hy-
draulic parameters, θs, θr, θ1/3, λ, ψb and Ksat, were sampled with 6000 
combinations (simulation runs) for the one-parameter method and the 
full BC method in RZWQM2. Th e sampled parameters were then used 
to run RZWQM2 and ranked based on the simulation results. Th e best 
parameter sets and parameter ranges sampled by LHS were used for fur-
ther calibration using PEST.

Th e PEST program is a model-independent optimization soft ware 
(Doherty, 2004) that communicates with a model using its own input 
and output fi les without any changes to the model. To optimize the soil 
hydraulic parameters in RZWQM2, the PAR2PAR utility in PEST 
was used to calculate and transform the BC or Ksat parameter values 
based on the parameter estimation methods in RZWQM2 as described 
above. Nolan et al. (2010) applied a similar procedure using PEST in 
conjunction with RZWQM2. During optimization, PEST varies each 
parameter from the current estimated values based on the GML method 
and reruns the model. An important restriction in the GML method is 
sensitivity to local minima (Gupta et al., 2003; Vrugt et al., 2003a). Th e 
initial parameter values and the given ranges of the parameters can af-
fect the calibration result (Hopmans et al., 2002; van Dam et al., 1994). 
Global sampling to constrain the reasonable parameter ranges can po-

tentially eliminate these problems. In this study, we tested whether the 
calibration of soil hydraulic parameters in RZWQM2 can be improved 
by combining the LHS and PEST calibration strategies (LHS + PEST).

Th e objective function used for PEST optimization is similar to 
the sum of squared errors between measured and simulated data sets:
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where F is a set of fi tting parameters, O(ti) is the observation at the ith 
time, P(F,ti) is the model prediction at the ith time, and wi is the weight-
ing factor for the ith observation. We only have one observation type 
(soil water content), and the weighting factor (wi) was set to 1 for all i.

Experimental Site Description
Th e fi eld site is part of the Drake Farm located in eastern Colorado 

(40.61′ N, 104.84′ W) as shown in Fig. 1. Th e average annual poten-
tial evaporation is approximately 1200 mm, while the average annual 
precipitation is approximately 350 mm. Th e soils include Wagonwheel 
loam (a coarse-silty, mixed, superactive, mesic Aridic Calciustept), 
Colby silt loam (a fi ne-silty, mixed, superactive, calcareous, mesic Aridic 
Ustorthent), and a Kim fi ne sandy loam (a fi ne-loamy, mixed, active, 
calcareous, mesic Ustic Torriorthent). Representative soil profi les, in-
cluding the depths of soil horizons and other basic soil information, 

were based on an Order-2 NRCS soil 
survey (Michael Peterson, NRCS, per-
sonal communication, 2001). Th e fi eld 
was managed with a winter wheat–fal-
low rotation in alternating strips (ap-
proximately 120 m wide). Winter wheat 
was planted in the fall and harvested in 
summer (usually mid-July) the follow-
ing year. Aft er wheat harvest, the strips 
remained fallow until the second au-
tumn (about 13–14 mo) before being 
replanted. Fallow strips were typically 
swept monthly with V-blades to control 
actively growing weeds. More detailed 
information on the experimental site 
can be found in Green et al. (2009). 
Soil moisture was measured hourly with 
dielectric capacitance sensors (Sentek 
EnviroSCAN or EnviroSMART, Sentek 
Sensor Technologies, Stepney, SA, 
Australia) from 2002 to 2008 includ-
ing four fallow periods and four crop 
seasons. Schwank et al. (2006) provided 
a detailed description and laboratory 
characterization of the Sentek capaci-
tance sensors, including the measure-
ment zone in the media around the ac-
cess tube. All Sentek probes were fully 
buried such that the probe did not in-
terfere with management practices and 
cropping patterns directly above each 

Fig. 1. Site map showing (a) the fi eld site (star) within the state of Colorado, and (b) locations of 
instruments used to measure profi le soil water contents and meteorological data. Only Sites C1, C2, 
D1, and E2 were simulated in this study. Wheat–fallow rotations were managed in alternating strips 
(delineated with black lines).
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probe. Wires were routed in buried trenches to the dataloggers at the 
edge of the fi eld.

Each “site” or landscape position fell within one management rota-
tion or the other and was represented by a single in situ EnviroSCAN 
or EnviroSMART probe with sensors at multiple depths (not replicated 
within a site). At one site (E2), measurements were centered at 10 depths 
of 30, 40, 50, 60, 70, 80, 90, 120, 150, and 170 cm (Table 2), where 
each sensor integrated approximately 10 cm vertically. Th ree other sites 
(C1, C2, and D1 in Fig. 1), with measured soil moisture at 30-, 60-, 90-, 
and 120- or 150-cm depths, were also used for comparing the diff er-
ent calibration procedures. Th e four sites selected for this study were in 
landscape positions (summit or crest) where runoff  did not accumulate 
on the surface, and little or no lateral subsurface fl ow was expected. At 
the meteorological station in the northwest corner of the fi eld, 12-min 
climate data including wind, solar radiation, and temperature were mea-
sured. Th ese data were averaged to daily values and used as model inputs, 
along with breakpoint rainfall intensity data (1.5-mm increments).

Th e measured soil water contents were low during the winter (dry 
period), increased due to snowmelt and rainfall during the spring and 
early summer (wet period), and maintained relatively high values dur-
ing the autumn. Comparing the two fallow periods at Site E2, the soil 
water contents were lower during the 2002–2003 fallow period than the 
2004–2005 fallow period (Fig. 2). Comparing soil water contents at dif-
ferent depths, the soil water at the 30-, 40-, and 50-cm depths showed 
similar trends (similar mean and standard error values), and similar 
soil water dynamics were found at the 60-, 70-, and 80-cm depths, at 
the 90-cm depth, and at the 120-, 150-, and 170-cm depths (Table 2). 
Th is result indicated that the vertical soil layers could be separated into 
four depths (15–55, 55–85, 85–105, and 105–170 cm) plus the surface layer 
(0–15 cm), which is consistent with the soil survey data and fi eld observations.

Model Calibration and Evaluation
Two fallow periods at Site E2 were alternated for model calibra-

tion and evaluation, i.e., cross-validation (Table 2). Th e same approach 
was applied to simulate Sites C1, C2, and D1, but the fallow periods 
diff ered among them. For the other three sites (Fig. 1), the moisture data 
sets included Fallow 1 (2006–2007 at C1 and C2 and 2007–2008 at 
D1) and Fallow 2 (2002–2003 at C1 and C2 and 2005–
2006 at D1). At Site E2, we also compared the calibration 
results with the observations at 10 depths (30, 40, 50, 60, 
70, 80, 90, 120, 150, and 170 cm) or at four depths (30, 
60, 90, and 120 cm) for the site.

Four stepwise approaches for calibrating soil hy-
draulic parameters in RZWQM2 were tested: (i) the 
default parameter values from RZWQM2 based on soil 
type (from soil surveys) were used based on Rawls et al. 
(1982); (ii) PEST optimization, where the initial val-
ues and ranges of these parameters were estimated by 
RZWQM2 based on soil types, and all six internal param-
eter estimation methods were used; (iii) LHS was used to 
sample the full range of parameters for the one-parameter 
method and the full BC parameter method; and (iv) 
based on the LHS analysis, further optimization using 
PEST for these parameters was performed across the six 

methods, where initial values and boundaries of these parameters for 
the two-parameter methods (SWRC2Kin and SWRC2Kes) were based 
on LHS search results of the full BC method. Across these parameter 
estimation methods in RZWQM2, the selected initial parameter values 
and boundaries were slightly diff erent. For all four steps, the diff erent 
temporal data sets (Fallow 1 and Fallow 2) were compared. Aft er that, 
we further compared the three diff erent calibration procedures (ii–iv) 
with the measured soil moisture data from other three sites.

Two model calibration criteria, RMSE and Nash–Sutcliff e model 
effi  ciency (NSME) (Nash and Sutcliff e, 1970), were used to evaluate the 
simulation results:
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where Pi is the ith predicted value, Oi is the ith observed value, Oavg is 
the average of the observed or simulated values, and n is the number of 
data pairs. A paired t-test was used for statistical signifi cance testing of 
the diff erences between these methods across the four sites.

RESULTS AND DISCUSSION
Model calibration and evaluation (cross-validation) were 

performed at four sites (C1, C2, D1, and E2) in an agricultural 
fi eld at the Drake Farm (Fig. 1). It is not feasible to show de-
tailed results at all four sites, so we focus here on Site E2. Th is site 
contained the most data vertically (10 depths) and temporally 
(no missing data for the periods analyzed). Th e following results 
apply to Site E2 unless otherwise noted.

Initial PEST Simulation Results
Th e default parameters based on soil survey data and soil 

class in RZWQM2 resulted in high RMSE values (0.078 m3 m−3 
for 2002 and 0.080 m3 m−3 for 2004) and negative NSME values 
(−0.16 for 2002 and −0.19 for 2004). Th ese simulation results 

Table 2. Site E2 statistical results of the measured soil water content (SWC) at 
each depth during the 2002–2003 and 2004–2005 fallow periods.

Depth

Soil water content

Fallow 1 (2002–2003) Fallow 2 (2004–2005)

Min. Max. Mean SD ΔSWC† Min. Max. Mean SD ΔSWS
cm —————————————— m3 m−3 ——————————————

30 0.15 0.40 0.29 0.11 0.21 0.22 0.42 0.32 0.07 0.13

40 0.18 0.40 0.30 0.10 0.17 0.21 0.43 0.30 0.08 0.13

50 0.18 0.39 0.28 0.09 0.17 0.19 0.43 0.28 0.08 0.13

60 0.14 0.35 0.24 0.09 0.16 0.16 0.39 0.24 0.08 0.13

70 0.14 0.34 0.22 0.09 0.16 0.15 0.39 0.24 0.09 0.15

80 0.15 0.33 0.22 0.07 0.15 0.16 0.39 0.24 0.09 0.15

90 0.12 0.24 0.16 0.05 0.11 0.13 0.34 0.20 0.09 0.14

120 0.10 0.15 0.12 0.02 0.03 0.12 0.31 0.18 0.08 0.15

150 0.12 0.16 0.13 0.02 0.03 0.13 0.28 0.18 0.06 0.12
170 0.13 0.17 0.15 0.01 0.03 0.15 0.26 0.18 0.04 0.09
† ΔSWC is the difference in soil water content at each depth between the beginning and 
end of the period.
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were signifi cantly improved by the initial optimization results us-
ing PEST based on the survey data as presented in Fig. 2 and 3. In 
general, simulated and measured soil water contents at diff erent 
depths showed similar trends, with better calibration results than 
cross-validation results. Large diff erences in model performance 
were found among these methods (Fig. 3), and the SWRC1Kin 
and SWRCλKin methods generally produced better simula-
tion results than the other methods. Abnormal soil evapora-
tion occurred for the two-parameter methods (SWRC2Kin and 
SWRC2Kes), however, with simulated annual soil evaporation 

values of <6 cm (only about 18% of rainfall) associated with un-
reasonable combinations of the soil hydraulic parameters θ1/3, 
θ15, θs and Ksat (Table 3), which is obviously lower than the ob-
served data on bare soil from other studies under similar climate 
conditions (Burt et al., 2005).

Th ese results confi rm that PEST optimization can be sen-
sitive to the initial parameter values and ranges and may result 
in poor calibration results, especially when parameter values are 
not well constrained (Doherty, 2004). Some calibrated param-
eter values (θs) also reached the upper or lower limits for the soil 

type, probably also due to the limited 
data available, parameter constraints, 
and model error during the opti-
mizations. As reported from some 
other studies (Skahill and Doherty, 
2006), the sensitivity of PEST to lo-
cal minima may result in abnormal 
calibrated parameters. Th e initial 
values and boundary conditions se-
lected based on prior information 
and other methods proved useful for 
more eff ective parameter estimation 
to simulate soil water processes, as il-
lustrated by other studies (Mertens et 
al., 2005; Kuzmin et al., 2008).

Latin Hypercube 
Sampling Results

Latin hypercube sampling was 
used to sample parameter combina-
tions and to search the full physical 
ranges of these soil hydraulic param-
eters in RZWQM2. Th e fi rst search 
boundaries were based on soil type 
for the one-parameter estimation 
methods. Th e parameter ranges for 
θs, θr, θ1/3, and Ksat at each soil layer 
were 0.43 to 0.55 m3 m−3, 0.01 to 
0.05 m3 m−3, 0.1 to 0.4 m3 m−3, 
and 0.01 to 10 cm h−1, respectively, 
except for the surface layer, where θs 
and Ksat were constrained to 0.46 
to 0.62 m3 m−3 and 0.5 to 15 cm 
h−1, respectively. Th e values of θs 
in the surface layer (0–15 cm) were 
relatively high due to surface tillage. 
Note that the parameter values of the 
tilled layer represent the consolidated 
(lowest) values; these are modifi ed 
(increased) by tillage in RZWQM2 
and reduced again by reconsolidation 
aft er rainfall.

For the two-parameter meth-
ods (SWRC2Kin and SWRC2Kes), 

Fig. 2. Comparisons of observed and simulated soil water content at Site E2 in each layer for the six 
parameter estimation methods using PEST: 2002–2003 fallow for (a) calibration or (c) evaluation, 
and 2004–2005 fallow for (b) calibration and (d) evaluation. Soil water contents were averaged from 
30-, 40-, and 50-cm depths, 60-, 70-, and 80-cm depths, 90-cm depth, and 120-, 150-, and 170-
cm depths for the simulated and measured data. The SWRC1Kin and SWRC1Kes are one-parameter 
methods, SWRC2Kin and SWRC2Kes are two-parameter methods, and SWRCλKin and SWRCλKes are 
full Brooks–Corey methods.
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unreasonable combinations of θ15 and θ1/3 occurred when sam-
pling the two parameters using the LHS method. Instead, we 
sampled the parameters θs, Ksat, λ, and ψb for the full BC method 
(SWRCλKin and SWRCλKes) based on soil type for each layer 
in RZWQM2, then calculated θ15 and θ1/3 using Eq. [7] and [8] 
for the two-parameter methods. Th e distributions and relation-
ships among these parameters showed similar trends between the 
one-parameter method and the full BC method. Th e deviations 
in estimated values of Ksat and θ15 from θ1/3 were mainly due to 
the variations in θs and θr. Th e relationship between θ1/3 and θ15 
for SWRCλKes showed a linear correlation, with a larger devia-
tion than for the SWRC1Kin method.

Profi le soil water balance is simulated by RZWQM2, 
whereas a full water balance is not available from water content 
measurements at discrete depths. Because the soil water contents 
in the surface layer (0–15 cm) were not measured, it was diffi  cult 
to refi ne the soil hydraulic parameters in this layer. Soil hydraulic 
properties in the surface layer, however, control water fl ux across 
the land surface and soil water content in the deeper layers. Soil 
evaporation and runoff  control the water balance under fallow 
conditions. For example, overestimation of soil evaporation in 
the model results in less water available for deep percolation.

Th e relationship between soil water storage below the sur-
face layer and soil hydraulic parameters in the surface layer were 
quantifi ed to refi ne the ranges of these soil hydraulic parameters 
in the layer. As an example, for the SWRC1Kin method, soil 
evaporation and soil water storage during the fallow period from 
2004 to 2005 responded in opposite directions to the changes in 
θ1/3 and Ksat. Th e estimated values of soil water storage change 
during the fallow period based on the measured water content 
data (Table 2) were about 14 to 16 cm, and the reason-
able ranges of θ1/3 should fall within 0.10 to 0.25 m3 
m−3. In same way, the range in Ksat can be estimated to 
be 0.5 to 10 cm h−1. Th is range in Ksat is consistent with 
the measured values at the surface based on steady, pon-
ded infi ltration (Green et al., 2009).

Scatter plots of model performance (RMSE) vs. 
individual parameters (Fig. 4) were used to identify 
the model response to these parameters at each layer 
and to refi ne the ranges of these parameters in all lay-
ers. Figure 4 shows some examples of the sensitivity of 
simulated water content at the 30-cm depth to soil hy-
draulic parameters using diff erent methods. Values of 
θ1/3 were computed from the full BC parameters for 
comparison with the one-parameter methods. Th e op-
timal range of θ1/3 was well-defi ned for all estimation 
methods (Fig. 4a, 4b, 4d, and 4e), as were the optimal 
ranges of Ksat for the constrained parameter methods of 
SWRC1Kes and SWRCλKes (Fig. 4g and 4h) and the 
optimal range of the pore size distribution parameter 
λ for SWRCλKin (Fig. 4f ). No obvious relationship 
between model performance and ψb was found (Fig. 
4c), however. No obvious relationship between model 
performance and Ksat was found for the SWRCλKin 

method (Fig. 4i), indicating less parameter correlation than as-
sumed using SWRCλKes (Fig. 4h). Unconstrained parameter 
interactions within the Kin methods make the optimal Ksat value 
less well-defi ned (non-unique), but the minimum values of the 
RMSE are similar among the methods. Optimal parameter val-
ues from PEST, for example, θ1/3 and θ15 were highly correlated 
with θs, with correlation coeffi  cient values of 0.5 to 0.8 for some 
soil depths.

Th e best parameter combinations and reasonable ranges of 
these parameters with best model performance for the two fallow 
periods were selected for further optimization by PEST based on 
6000 simulation runs. As indicated in Fig. 4, there are many pa-
rameter sets that produced similar simulation results for the two 
fallow periods. Th e ranges of these parameters selected by the 
LHS method were slightly diff erent among the six methods in 
RZWQM2. Th e best simulation results based on 6000 simula-
tion runs sampled by LHS are presented in Fig. 5 and Table 4. For 
the two fallow periods, a slightly better model performance, with 
lower RMSE and higher NSME values, occurred for the 2004–
2005 fallow period than for the 2002–2003 fallow period. Th e 
model generally overpredicted soil water content during the win-
ter and underpredicted soil water content during summer. Th e 
one-parameter methods produced better simulation results (high 
NSME values) for the two fallow periods than SWRCλKin, but 
similar to SWRCλKes (Fig. 5).

In theory, the full BC method is more fl exible in regulat-
ing the combination of these parameters than the one-param-
eter method, but the search space increases exponentially to 
the power of the number of independent parameters explored. 
Under the current condition with 6000 simulation runs for 

Fig. 3. Comparisons of the model performances for reproducing the measured soil 
water contents at Site E2 by the six parameter estimation methods in RZWQM2 
using PEST with different temporally measured soil water data. The RMSE (bars) 
and Nash–Sutcliffe model effi ciency (NSME) (points) were calculated from all 
the measured and simulated data averaged across all the depths. The SWRC1Kin 
and SWRC1Kes are one-parameter methods, SWRC2Kin and SWRC2Kes are two-
parameter methods, and SWRCλKin and SWRCλKes are full Brooks–Corey methods.
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each method, the above results indicated that the one-parameter 
method in RZWQM2 can be more effi  cient than the two-pa-
rameter method. Reducing simulation runs by using the relation-
ships between parameters (Eq. [7–9]) is a useful and effi  cient way 
to search and refi ne the soil hydraulic parameters in RZWQM2, 
given limited computational power where each set of 6000 runs 
took more than 12 h on a desktop computer.

Th e estimated value of Ksat diff ered between SWRC1Kin 
and SWRC1Kes and between SWRCλKin and SWRCλKes, 
but showed similar trends with soil depth (Table 3). Across the 
six methods, the selected parameter values of θ1/3 and θ15 gen-
erally increased from the surface layer to the second and third 
layers and decreased in the last two layers. In general, Ksat values 

changed inversely with θ1/3 (per Eq. [10]) and were obviously 
higher for the SWRC1Kes and SWRCλKes methods than for 
the SWRC1Kin and SWRCλKin methods in the surface layer, 
becoming closer at the deeper layers.

Latin Hypercube Sampling plus PEST 
Optimization Results

For the six methods in RZWQM2, better calibration re-
sults were obtained than evaluation results for LHS + PEST 
optimizations, and overpredicted soil water contents generally 
occurred during the winter seasons, while underpredicted soil 
water contents occurred during the summer and autumn (Fig. 6; 
Table 4). Th e magnitude of change in seasonal water contents 

Fig. 4. Errors in simulated soil water content at Site E2 at the 30-cm depth vs. soil water content at 33 kPa, bubbling-pressure suction, pore-size 
distribution parameter λ, and saturated hydraulic conductivity for the parameter estimation methods (2004–2005 fallow period) based on Latin 
hypercube sampling search analysis (6000 simulation runs). The SWRC1Kin and SWRC1Kes are one-parameter methods and SWRCλKin and 
SWRCλKes are full Brooks–Corey methods.
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was generally simulated well, but the timing of the main wetting 
front was not always reproduced, particularly for the evaluation 
period (e.g., Site E2 evaluation for 2002–2003 shown in Fig. 6c). 
Measured water contents were also more temporally stable than 
simulated values.

Th e temporal data sets (the two fallow periods) used for cal-
ibrations and cross-validation infl uenced the simulation results. 
When using 2002–2003 data for calibration, the soil water con-
tent was generally overpredicted during the evaluation period, 
although there were underpredictions in soil water during the 
summer (Fig. 6a and 6d); using 2004–2005 data for calibration, 
soil water was overpredicted during both calibration and evalu-
ation (Fig. 6b and 6c). Th is result is similar to the simulation re-
sults from our initial PEST optimizations (Table 4). Methods 
SWRC1Kes and SWRCλKes produced worse model perfor-
mance than the other methods when using 2004–2005 fallow 
data for calibration, and the six parameter methods produced 
similar model performance when 2002–2003 fallow data were 
used (Table 4).

Similar trends in NSME with soil depth were found across 
the six parameter estimation methods, where lower NSME val-
ues generally occurred at the deepest layers (Table 4). Th e nega-
tive NSME values at the deepest depth for all the methods in-
dicated a worse model performance at this layer than at other 
layers. Th is result was probably due to the small variance in the 
measured values causing low NSME values even if the RMSE 
values are not large (see Eq. [12] and [13]).

Th e optimized parameter values using LHS + PEST showed 
similar trends with depth among the six methods or the two data 
sets used for calibration (Table 3). When using 2002–2003 fal-
low data for calibration, calibrated parameters of θ1/3, θ15 and 
Ksat for SWRC1Kin were generally lower than for the other 

methods; using 2004–2005 fallow data for calibration, these 
parameters for SWRC2Kin were relatively lower than the oth-
er methods except for in the surface layer. Th e resulting water 
retention characteristics and hydraulic conductivity curves for 
SWRC1Kin (as an example) are illustrated for each calibra-
tion period and soil layer in Fig. 7. Higher values of Ksat in 
the surface layer were obtained for the fi rst calibration period 
(2002–2003) than for the second calibration period (2004–
2005), along with changes in the SWRC. Th ese diff erent soil 
hydraulic properties result in diff erent soil evaporation and 
soil water redistribution to deeper layers. Comparing these 
parameters in the deep layer (85–170 cm), diff erent results 
were found between the two calibration periods. As shown 
in Fig. 2 and 8, the underpredicted soil water contents in the 
deep layer (2004–2005 fallow period) were mainly caused by 
higher soil evaporation. In Fig. 3 and 9, the overpredicted soil 
water contents in these deep layers (2002–2003 fallow pe-
riod) were mainly caused by lower soil evaporation and less 
drainage from the soil profi le.

Wagener et al. (2003) showed that optimal model param-
eter sets can change with time, with variable degrees of “identi-
fi ability” depending on the system states and boundary condi-

tions. Th erefore, we were not surprised that the cross-validation 
results were poorer than calibration of either time period. For 
example, diff erences between simulated and measured soil water 
at 90 cm may highlight the need for improved evaporation mod-
eling and possible limitations of the model structure in terms of 
the fi xed depths of soil horizons.

In general, the SWRC1Kin and SWRC2Kin methods pro-
duced better simulation results during the cross-validations than 
the other methods. Th e relatively large deviations between mea-
sured and simulated soil moisture for the 60- to 90-cm layers 
were probably caused by unreasonable soil hydraulic parameters 
in the surface layer (0–15 cm), and water content was not mea-
sured in the surface horizon. More reasonable soil parameters in 
the surface layer can improve soil evaporation and other compo-
nents of the soil water balance simulation and result in better soil 
moisture simulations in deeper layers. Comparing the measured 
and simulated data across seasons, the simulated soil moisture 
generally showed quicker responses to rainfall events and soil 
evaporation than the measured data (Fig. 2, 3, 8, and 9). Several 
factors can contribute to this result, such as rainfall patterns for 
the two fallow periods, soil hydraulic property variations across 
depths, and agronomic management eff ects (e.g., tillage) on 
soil properties. Soil hydraulic property variations across depths 
should be a main reason because soil horizon depths were de-
lineated based on an Order 2 soil survey for the site, which may 
not accurately represent the specifi c soil horizon depths at each 
probe location. Furthermore, the assumption of uniform soil 
properties for each layer in the model may not accurately repre-
sent the real fi eld conditions, where fi ne-scale soil layering aff ects 
the horizon-scale average hydraulic properties in nonlinear ways 
(e.g., Green et al., 1996).

Fig. 5. Comparisons of the model performances at Site E2 for four parameter 
estimation methods in RZWQM2 using Latin hypercube sampling. The RMSE 
(bars) and Nash-Sutcliffe model effi ciency (NSME) (points) were calculated 
from all the measured and simulated data at all soil depths. The SWRC1Kin 
and SWRC1Kes are one-parameter methods and SWRCλKin and SWRCλKes 
are full Brooks–Corey methods.
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Comparisons of Calibration Procedures, Methods, 
and Data Sets

Both PEST and LHS + PEST improved the model perfor-
mance signifi cantly in all cases compared with the simulation 
results using the default parameter values (Fig. 8). Th e simula-
tion results from the LHS method were more stable between 
the two fallow data sets than the PEST optimizations but with 
higher RMSE values (Table 5). Although better calibration re-
sults were obtained from the PEST procedure than the LHS 
procedure, unrealistic soil evaporation with abnormal calibrated 

parameters occurred, as discussed above. Similar results also oc-
curred when the same calibration procedure was applied to the 
other three sites, where worse simulation results were generally 
obtained than the model performance at Site E2 (Table 5). Th e 
selected initial values and ranges of these parameters from LHS 
avoided this problem and resulted in similar or better simulation 
results (lower RMSE and higher NSME values) using PEST in 
subsequent optimizations across the other three sites (Table 5; 
Fig. 8). Th e worst simulation result for the diff erent methods oc-
curred at Site D1, with low or negative NSME values for PEST 

Table 4. The model calibration criteria of RMSE and Nash–Sutcliffe model effi ciency (NSME) for simulated soil water content at 
each individual layer for the six parameter estimation methods (Table 1) at Site E2.

Data set Depth
SWRC1Kin SWRC1Kes SWRC2Kin SWRC2Kes SWRCλKin SWRCλKes

RMSE NSME RMSE NSME RMSE NSME RMSE NSME RMSE NSME RMSE NSME

cm m3 m−3 m3 m−3 m3 m−3 m3 m−3 m3 m−3 m3 m−3

PEST parameter estimation program

2002–2003
calibration

30 0.028 0.91 0.044 0.80 0.026 0.93 0.031 0.90 0.022 0.95 0.028 0.92
60 0.015 0.97 0.032 0.85 0.026 0.90 0.035 0.82 0.016 0.96 0.029 0.87
90 0.013 0.93 0.018 0.86 0.028 0.63 0.023 0.76 0.013 0.93 0.017 0.87
150 0.022 −1.09 0.023 −1.24 0.02 −0.50 0.019 −0.43 0.022 −1.08 0.021 −0.96

2004–2005
evaluation

30 0.021 0.93 0.034 0.82 0.034 0.80 0.048 0.64 0.028 0.87 0.027 0.89
60 0.039 0.81 0.049 0.71 0.038 0.83 0.034 0.86 0.024 0.93 0.023 0.94
90 0.033 0.86 0.049 0.67 0.052 0.63 0.027 0.91 0.031 0.87 0.024 0.92
150 0.056 −0.02 0.057 0.03 0.062 −0.12 0.062 −0.12 0.026 0.78 0.021 0.88

2004–2005
calibration

30 0.028 0.88 0.04 0.75 0.025 0.90 0.026 0.89 0.026 0.89 0.033 0.82
60 0.027 0.91 0.039 0.81 0.025 0.93 0.022 0.94 0.036 0.84 0.039 0.82
90 0.022 0.94 0.033 0.86 0.023 0.93 0.025 0.91 0.025 0.92 0.053 0.61
150 0.037 0.59 0.024 0.85 0.019 0.90 0.02 0.89 0.053 0.06 0.040 0.57

2002–2003
evaluation

30 0.038 0.85 0.065 0.57 0.036 0.87 0.044 0.80 0.050 0.74 0.059 0.64
60 0.026 0.89 0.06 0.45 0.038 0.75 0.039 0.76 0.041 0.74 0.052 0.56
90 0.04 0.28 0.07 −1.21 0.064 −0.89 0.062 −0.75 0.069 −1.19 0.075 −1.55
150 0.039 −4.98 0.036 −5.44 0.024 −1.43 0.033 −3.62 0.037 −5.72 0.042 −7.55

Latin hypercube sampling
2002–2003 30 0.053 0.71 0.054 0.70 0.061 0.62 0.05 0.74

60 0.046 0.68 0.041 0.75 0.054 0.56 0.041 0.74
90 0.041 0.24 0.028 0.65 0.045 0.08 0.044 0.12
150 0.026 −1.84 0.023 −1.22 0.025 −1.81 0.021 −0.94

2004–2005 30 0.034 0.81 0.039 0.76 0.046 0.66 0.047 0.65
60 0.038 0.82 0.044 0.76 0.052 0.68 0.047 0.74
90 0.037 0.82 0.045 0.72 0.051 0.65 0.032 0.87
150 0.032 0.70 0.032 0.72 0.042 0.50 0.035 0.65

Latin hypercube sampling + PEST

2002–2003
calibration

30 0.035 0.87 0.046 0.78 0.033 0.88 0.028 0.92 0.026 0.93 0.025 0.90
60 0.024 0.92 0.035 0.82 0.037 0.79 0.027 0.89 0.020 0.94 0.021 0.95
90 0.029 0.61 0.02 0.82 0.022 0.79 0.017 0.86 0.013 0.92 0.025 0.91
150 0.022 −0.99 0.022 −1.00 0.023 −1.25 0.017 −0.36 0.022 −1.06 0.021 0.88

2004–2005
evaluation

30 0.028 0.87 0.036 0.80 0.035 0.80 0.028 0.87 0.022 0.93 0.047 0.77
60 0.031 0.88 0.048 0.72 0.027 0.91 0.044 0.77 0.044 0.76 0.034 0.82
90 0.028 0.87 0.036 0.80 0.035 0.80 0.028 0.87 0.041 0.77 0.057 −0.50
150 0.042 0.57 0.05 0.54 0.049 0.43 0.047 0.62 0.051 0.16 0.038 −6.40

2004–2005
calibration

30 0.026 0.90 0.032 0.84 0.026 0.89 0.026 0.89 0.030 0.91 0.029 0.86
60 0.028 0.90 0.036 0.84 0.019 0.95 0.022 0.94 0.035 0.81 0.023 0.94
90 0.024 0.92 0.035 0.84 0.024 0.92 0.024 0.92 0.023 0.75 0.023 0.93
150 0.030 0.76 0.031 0.74 0.022 0.85 0.020 0.88 0.018 −0.55 0.022 0.87

2002–2003
evaluation

30 0.045 0.79 0.062 0.60 0.032 0.90 0.050 0.73 0.041 0.73 0.061 0.61
60 0.041 0.73 0.058 0.48 0.029 0.87 0.045 0.67 0.043 0.77 0.048 0.64
90 0.055 −0.36 0.050 −0.14 0.046 0.05 0.073 −1.42 0.053 0.63 0.073 −1.44
150 0.024 −1.40 0.029 −2.50 0.028 −2.32 0.036 −5.90 0.048 0.29 0.045 −8.96
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optimization. For Sites C1 and C2, the relative RMSE (RMSE/
measured mean) was about 30% for the whole simulation pe-
riod. Th e greatest diff erences between measured and simulated 
soil water contents occurred mainly during winter in the deeper 
layers and were similar to the simulation errors at Site E2.

Although the simulation results for Sites C1, C2, and D1 
were worse than for Site E2, simulated soil water contents im-
proved going from the initial PEST procedure to the LHS + 
PEST calibration procedure, suggesting an advantage in cali-

brating soil hydraulic parameters 
in RZWQM2 by combining the 
LHS and PEST methods (Table 
5). Th e better PEST calibrations 
with worse cross-validation results 
compared with LHS + PEST op-
timization across the three sites 
indicate an overcalibration for 
the initial PEST calibrations. Th e 
initial values and ranges of soil 
hydraulic parameters from LHS 
search selections helped PEST 
optimization to obtain more 
physically realistic combinations 
of these parameters but at the 
expense of increased computing 
time because about 200 to 400 
runs were used by the PEST opti-
mization procedure. By selecting 
only the initial values and ranges 
of these parameters by LHS, the 
model runs can be reduced dra-
matically. Across the four sites, the 
SWRC1Kin method generally re-
sulted in better simulation results 
for the initial PEST optimization 
or LHS search analysis procedure 
compared with the other param-
eter estimation methods. For 
the LHS + PEST optimizations, 
similar simulation results were ob-
tained across the diff erent meth-
ods in RZWQM2.

Th e performance of these 
methods varied depending on the 
specifi c calibration procedures 
and probe locations (data sets) 
(Fig. 8; Table 5). For example, at 
Site E2, the one-parameter meth-
ods performed better than the 
two-parameter methods when us-
ing the LHS analysis, while better 
simulation results were obtained 
with the two-parameter methods 
than the one-parameter methods 

using the LHS + PEST procedure. Similar results occurred at 
Site D1, while the SWRC2Kin method resulted in better simula-
tions at Site C1 compared with the other methods. On the other 
hand, all methods produced similar simulation results at Site C2. 
Based on these results and a previous study by Ma et al. (2009), 
diff erent soil hydraulic parameter estimation methods should be 
evaluated for specifi c studies, and we cannot identify one meth-
od that works best in all cases.

Fig. 6. Comparisons of observed and simulated soil water content at Site E2 in each layer for the six 
parameter estimation methods using the Latin hypercube sampling (LHS) + PEST procedure: 2002–2003 
fallow for (a) calibration or (c) evaluation, and 2004–2005 fallow for (b) calibration and (d) evaluation. 
Soil water contents were averaged from 30-, 40-, and 50-cm depths, 60-, 70-, and 80-cm depths, 90-cm 
depth, and 120-, 150-, and 170-cm depths for simulated and measured data. The SWRC1Kin and SWRC1Kes 
are one-parameter methods, SWRC2Kin and SWRC2Kes are two-parameter methods, and SWRCλKin and 
SWRCλKes are full Brooks–Corey methods.
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Th e parameters calibrated by the LHS + PEST procedure 
for the six methods are presented in Table 3. Similar trends 
in θ1/3, θ15, and Ksat occurred with soil depth among the pa-
rameter estimation methods, but large diff erences in Ksat were 
found between the two diff erent methods of estimating Ksat 
(denoted Kin and Kes). Across the six methods, no signifi cant 
diff erences in the values of θs, θ1/3, and θ15 were found (P = 
0.274, where P is the probability value for signifi cance test-
ing according to a paired t-test). Th ese results suggested that 
the calibrated parameter values at Site E2 were relatively stable 
among the six methods; however, strong interactions between 
these soil hydraulic parameters resulted in diff erent model 
performance. Comparing the calibrated θ1/3 and θ15 values 
from the two data sets across these diff erent methods, lower 
values in the surface layer (0–15 cm) and higher values in the 
deeper layers (15–105 cm) were found in most cases when the 
calibration data from 2004–2005 were used compared with 
2002–2003 (Table 3). Th is result shows the uncertainty in 
calibrating soil hydraulic parameters associated with diff erent 
temporal patterns in the measured data. Th is also confi rms the 
necessity of cross-validation, as done here, for model param-
eter evaluation.

Th e relationship between the calibrated values of Ksat and 
eff ective porosity (θs − θ1/3) and between θ1/3 and θ15 at each 
individual layer across four of the methods are presented in Fig. 
9. Th e increase in Ksat with increasing values of eff ective porosity 
for the SWRC1Kes and SWRC2Kes methods follows from Eq. 
[10]. For the other two methods with independent Ksat calibra-
tion, values of Ksat did not follow this functional relationship 
with θs − θ1/3, and there was substantial scatter. From these re-
sults, we conclude that Eq. [10] overestimated Ksat for (θs − θ1/3) 
> 0.3 (Fig. 9a). Th e value of Ksat can be calibrated fi rst based on 
its relation with eff ective porosity or soil texture (Ahuja et al., 
1984, 1989; Rawls et al., 1982) and can be further optimized 
manually or automatically based on a reasonable range of Ksat 
values. A strong positive relation between θ1/3 and θ15 (Fig. 9b) 
was found for the one-parameter method, where θ15 was estimat-
ed from Eq. [8]. Th e small deviations around the deterministic 
relationship between θ1/3 and θ15 for the one-parameter estima-
tion method were caused mainly by the variations in residual 
water content (θr) sampled by LHS. Estimated θ15 values from 
the two-parameter methods were generally higher than the val-
ues calibrated from the one-parameter methods when θ1/3 was 
<0.25 m3 m−3, and the opposite results were found when θ1/3 
was >0.25 m3 m−3. Th e one-parameter method also produced a 
few pairs of θ1/3 and θ15 substantially lower than the lower limits 
using the two-parameter method.

Th e variations in calibrated parameters between methods 
and data sets indicate large uncertainties in calibrating soil hy-
draulic parameters in RZWQM2 (Table 6). Such variations 
exist regardless of the parameter optimization procedures used. 
Higher relative mean diff erence (RMD) values in Ksat than 
in θ1/3 occurred across the diff erent methods and data sets. In 
another study, obvious diff erences in calibrated soil hydraulic 

parameter values for the SWAT model were found between ex-
trapolation and interpolation calibration–validation procedures 
(Sheikh and van Loon, 2007). Some reasons other than errors 
in the measured data were associated with the changes in soil 
hydraulic parameters due to tillage practices (Ahuja et al., 1984, 
1998) and improper or insuffi  cient calibration due to data limi-
tations, even with a relatively rich temporal data set.

Th e six methods tested in RZWQM2 also produced diff er-
ent parameter values with these calibration procedures and data 
sets. When the measured data at all 10 depths or the selected four 
depths (30, 60, 90, and 120 cm) were used for Site E2, very simi-
lar values of θ1/3 were obtained for the six methods, indicating 
that the vertical resolution in measured soil water (10 vs. four 
depths) had little eff ect on θ1/3. Based on the mean RMD for 
Ksat across all layers, the eff ect of spatial (vertical) data resolution 
was much less than the eff ect of temporal data and estimation 
methods. Our results indicate that soil water measurements at 
the four depths were adequate for calibrating soil hydraulic pa-
rameters in RZWQM2 at the experimental site. As noted above, 
however, an additional sensor in the near-surface layer (0–15 
cm) would probably have improved the simulated infi ltration, 
runoff , and soil evaporation.

Th e variability in the calibrated soil hydraulic parameters in 
RZWQM2 among the diff erent data sets in the case study (Table 
6) was partly associated with the high sensitivity of the automatic 
calibration procedures (PEST) to the temporal calibration data 
sets. Th e diff erent calibrated parameters for the six parameter es-
timation methods illustrates the parameter uncertainty problem 
of non-uniqueness as defi ned by Beven and Binley (1992) and as 
reported in other studies (Duan et al., 1992; Yapo et al., 1998; 
Vrugt et al., 2003b).

Fig. 7. The relationships of relative saturation [S = (θ − θr)/(θs − θr), where 
θ, θr, and θs are measured, residual, and saturated soil water contents] and 
log10–transformed soil hydraulic conductivity [log (K(ψ)], K in cm h−1) 
versus log10–transformed matric suction (log(ψ), ψ in cm] for the two 
calibration periods (2002–2003 and 2004–2005) and each individual layer 
based on the parameters calibrated by Latin hypercube sampling + PEST 
parameter estimation program for the SWRC1Kin one-parameter method 
at Site E2.
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Our results also showed that diff erent combinations of 
the parameters in RZWQM2 can result in similar simulation 
results from the LHS analysis, where many diff erent combina-
tions of these parameters can result in similar model perfor-
mance (RMSE and NSME values) (Fig. 4). Th e problem of 
non-uniqueness in model calibration due to acceptable solutions 
for single-objective automatic procedures was also reported by 
Madsen (2003). Th ere is a need for prior knowledge and auxil-
iary data related to these model parameters before calibration. 
For the current study, detailed soil evaporation and Ksat values 

for the surface layer should be important for constraining soil 
hydraulic parameters in the surface layer with LHS, contributing 
to parameter optimization in other deeper layers, and reducing 
the uncertainties in parameter values in RZWQM2.

Th e method of measuring soil water content may be an-
other contribution to the parameter and simulation uncer-
tainty in this study. Measured soil water contents represented 
certain depth intervals, rather than averaging across full soil 
horizons, such as when neutron probe and time domain refl ec-
tometry methods are used. In this study, the measured soil wa-
ter contents using the dielectric capacitance method represent-
ed 10-cm-thick layers. Simulated and measured soil water data 
were compared across the same 10-cm-thick depths, but the 
soil hydraulic parameters were assumed to be uniform across 
thicker soil horizons (see Table 3, e.g., 15–55 cm). Th is assump-
tion should be further tested against observed fi eld conditions. 
Increasing the number of soil horizons increases the number of 
parameters and their spatial interactions, which may be needed 
to further refi ne the calibrations.

Fig. 8. Comparisons between the different calibration strategies of 
the PEST parameter estimation program and the combination of Latin 
hypercube sampling and PEST (LHS + PEST), using the RMSE based 
on all soil depths at the four sites across the different parameter 
estimation methods. The default parameter results were based on 

soil type in RZWQM2 (Rawls et al., 1982). Data from Fallow 1 were 
measured during 2006–2007 at C1 and C2, and during 2007–2008 
at D1. Data from Fallow 2 were measured during 2002–2003 at C1 
and C2, and during 2005–2006 at D1. Both fallow periods were used 
for calibration and evaluation. The SWRC1Kin and SWRC1Kes are 
one-parameter methods, SWRC2Kin and SWRC2Kes are two-parameter 
methods, and SWRCλKin and SWRCλKes are full Brooks–Corey methods.

Fig. 9. Relationships between the calibrated soil hydraulic parameters 
of soil water content at 33 and 1500 kPa (θ1/3 and θ15, respectively; θs 
is saturated soil water content) and saturated hydraulic conductivity 
(Ksat) for the one-parameter methods (SWRC1Kin and SWRC1Kes) and 
two-parameter methods (SWRC2Kin and SWRC2Kes) based on the 
results from optimization using Latin hypercube sampling combined 
with the PEST parameter estimation program for Site E2.
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CONCLUSIONS

Six methods within RZWQM2 for estimating the BC 
soil hydraulic parameters were evaluated using two external 
optimization procedures (LHS and PEST) and their combina-
tion (LHS + PEST). Based on our results, the one-parameter 
method is recommended for the LHS procedure using a limited 
number of samples (6000). Th e two-parameter method can be 
used to further improve the calibrations, but this requires care-
ful setting of the parameter ranges for the automatic calibra-
tion procedures as implemented here. Th e SWRC2Kin method 
outperformed the other fi ve internal parameter estimation meth-
ods only when used with the LHS + PEST approach. Otherwise, 
the one-parameter method was more effi  cient when using PEST 
or LHS alone. Th is is also why the one-parameter methods have 
been developed for manual calibration.

Th e combination of LHS + PEST avoided anomalous 
soil hydraulic parameters and soil evaporation predictions. 
Th e LHS results reduced the parameter search space and sta-
bilized simulation results between calibration and evaluation 
periods compared with the initial PEST optimizations. Recent 

advances in other optimization procedures discussed here may 
be tested in future investigations using these data and periods 
with crop growth.

Cross-validation during diff erent time periods identifi ed 
some large deviations between simulated and measured water 
contents, primarily related to the timing of propagation of sea-
sonal wetting fronts with depth. Th e variability of calibrated 
soil parameters between calibration periods implied parameter 
uncertainty or non-uniqueness, indicating possible structural 
model errors related, at least in part, to the delineation of soil ho-
rizons. Th us, more site-specifi c soil data and characterization of 
soil layers may help reduce parameter uncertainty and improve 
spatial and temporal aspects of simulated soil water dynamics.

Th e very similar calibrated parameter values based on 10 
sensor depths vs. four depths indicate that soil water measure-
ments at the four depths (e.g., 30-cm intervals) in most probes 
at the experimental fi eld were adequate for calibrating soil hy-
draulic parameters in RZWQM2. More shallow measurements 
(<30 cm), however, should help with calibration of the surface 
soil layers that control most of the infi ltration and evaporation 

Table 5. Statistical results for simulated soil water in the profi les calibrated using Latin hypercube sampling (LHS), the PEST param-
eter estimation program, or LHS and PEST combined at the four sites. The RMSE and Nash–Sutcliffe model effi ciency (NSME) were 
averaged across all depths and both fallow periods for the different parameter estimation methods. The measured mean value was 
calculated across all the depths for the two fallow periods.

Site
Measured 

mean

Initial PEST program
LHS

LHS + PEST

Calibration Evaluation Calibration Evaluation

RMSE NSME RMSE NSME RMSE NSME RMSE NSME RMSE NSME

m3 m−3 m3 m−3 m3 m−3 m3 m−3 m3 m−3 m3 m−3

C1 0.186 0.039 0.461 0.075 −0.432 0.051 0.610 0.033 0.685 0.067 −0.280

C2 0.166 0.043 0.506 0.058 0.204 0.057 0.498 0.036 0.636 0.049 0.4

D1 0.176 0.031 −0.013 0.039 −0.615 0.035 0.550 0.030 0.105 0.038 −0.325

E2 0.224 0.028 0.860 0.045 0.633 0.043 0.679 0.029 0.852 0.044 0.657

Mean 0.188 0.035 0.054 0.047 0.032 0.049

Table 6. Averaged relative mean difference (RMD) for the calibrated soil hydraulic parameters of soil water at 33 kPa (q1/3) and satu-
rated hydraulic conductivity (Ksat) for the different fallow periods, parameter estimation methods (SWRC1Kin, SWRC1Kes, SWRC2Kin, 
and SWRC2Kes), and data sets (10 or four depths) at E2 site. The ranges of RMD among the six methods are given in parentheses.

Soil depth

RMD†

Temporal, Fallows 1 or 2‡ Spatial, 10 or 4 depths§ Parameter estimation method¶

θ1/3
Ksat θ1/3

Ksat θ1/3
Ksat

cm ————––––––––––––––––––––—————————— % —––––––––––———––––––––––——————————

0–15 29 (10–38) 28 (0–58) 0 7 18 (0–28) 105 (79–161)
15–55 12 (5–26) 108 (50–158) 1 18 9 (0–18) 97 (32–152)
55–85 15 (8–26) 94 (16–150) 0 19 14 (3–27) 65 (23–115)

85–105 23 (5–38) 52 (0–118) 0 8 11 (0–20) 78 (31–133)

105–170 33 (12–43) 87 (35–149) 3 11 9 (1–17) 32 (8–91)

Mean 22 74 1 13 12 76
† 

( )1 1

2

100%

L M
ij ij

i j ij ij

X Y

X Y
RMD

L M N
= =

é ù-
ê ú

+ê úë û= ´
´ ´

å å

where i is fallow period, j is parameter method, Xij and Yij are the calibrated parameter values from the different fallow periods (temporal), different 
measured data depths (spatial), or different parameter methods, and L = 2, M = 4, and N = 1 .
‡ RMD was calculated for the two fallow periods, Fallow 1 (2002–2003) and Fallow 2 (2004–2005), across the four parameter estimation methods.
§ RMD was calculated when the data for 10 or four depths were used for the four parameter estimation methods.
¶ RMD was calculated for the four parameter estimation methods.
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fl uxes. Also, soil parameter interactions across horizons aff ect the 
space–time distribution of soil water.

Th is case study in a semiarid climate illustrates how soil hy-
draulic parameters can be optimized using diff erent automated 
calibration procedures evaluated by cross-validation with time. 
In future work, the diff erent parameter estimation methods in 
RZWQM2 should be compared further under a broader range 
of site conditions, such as more humid climates and clayey soils, 
using advanced optimization procedures.
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